Do protons and X-rays induce cell-killing in human peripheral blood lymphocytes by different mechanisms?
نویسندگان
چکیده
Purpose Significant progress has been made in the technological and physical aspects of dose delivery and distribution in proton therapy. However, mode of cell killing induced by protons is less understood in comparison with X-rays. The purpose of this study is to see if there is any difference in the mode of cell-killing, induced by protons and X-rays in an ex vivo human peripheral blood lymphocyte (HPBL) model. Materials and methods HPBL were irradiated with 60 MeV proton beam or 250-kVp X-rays in the dose range of 0.3-4.0 Gy. Frequency of apoptotic and necrotic cells was determined by the Fluorescein (FITC)-Annexin V labelling procedure, 1 and 4 h after irradiation. Chip-based DNA Ladder Assay was used to confirm radiation-induced apoptosis and necrosis. Chip-based DNA Ladder Assay was used to confirm radiation-induced apoptosis. Results Ex vivo irradiation of HPBL with proton beams of 60 MeV or 250 kVp X-rays resulted in apoptotic as well as necrotic modes of cell-killing, which were evident at both 1 and 4 h after irradiation in the whole dose and time range. Generally, our results indicated that protons cause relatively higher yields of cell death that appears to be necrosis compared to X-rays. The analysis also demonstrates that radiation type and dose play a critical role in mode of cell-killing. Conclusion Obtained results suggest that X-rays and protons induce cell-killing by different modes. Such differences in cell-killing modes may have implications on the potential of a given therapeutic modality to cause immune modulation via programmed cell death (X-rays) or necrotic cell death (proton therapy). These studies point towards exploring for gene expression biomarkers related necrosis or apoptosis to predict immune response after proton therapy.
منابع مشابه
Modification of 10 cGy neutron or gamma-rays induced chromosomal damages by hyperthermia: an in vitro study
Background: To evaluate the effects of hyperthermia (HT) on the frequency of chromosomal aberrations induced by a low dose of neutron or γ-rays in human peripheral blood lymphocytes. Materials and Methods: Blood samples were exposed to HT (41.5°C for 30 and 60min, 43°C for 15 and 30min), 10 cGy neutron or γ-rays, HT + neutron/γ, and neutron/γ + HT. After standard cell culture, harvestin...
متن کاملAssessment of the radioprotective effects of amifostine on human lymphocytes irradiated in vitro by gamma-rays using cytokinesis-blocked micronucleus assay
Background: A radioprotective effect of amifostine as well as its ability to modulate the level of spontaneous and gamma-irradiation-induced genetic changes on human peripheral blood lymphocytes has been investigated . Amifostine, known as a potent radical scavenger, has been introduced as the most effective radioprotector, yet it is not completely approved for the clinical use. However, furt...
متن کاملRadioprotective effects of selenium and vitamin-E against 6MV X-rays in human blood lymphocytes by micronucleus assay
Background: Critical macromolecules of cells such as DNA are in exposure to damage of free radicals that induced from the interaction of ionizing radiation with biological systems. Selenium and vitamin-E are natural compounds that have been shown to be a direct free radical scavenger. The aim of this study was to investigate the radioprotective effect of selenium and vitamin-E separately and sy...
متن کاملCombined Effects of 528 Hz Sound and X-ray in Peripheral Blood Lymphocytes
Introduction: Radiotherapy is still one of the main options for cancer treatment but it is in association with damage to normal cells as well as the tumor cells. To reduce the injury in normal cells we have evaluated the effect of 528 hertz sound after X irradiation in peripheral blood lymphocytes. Materials and Methods: in this study, peripheral blood was o...
متن کاملGrape seed extract alleviates radiation-induced damages in human blood lymphocytes
Objective: Ionizing radiation induces deleterious effects in the biological systems by producing free radicals. Grape Seed Extract (GSE) as a free radical scavenger could protect the body against the damages. Materials and Methods: In this study, 12 healthy male volunteers were divided into Groups 1, 2, 3 and 4 and received 100, 300, 600 and 1000...
متن کامل